Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).

نویسندگان

  • Jinjie Shi
  • Hua Huang
  • Zak Stratton
  • Yiping Huang
  • Tony Jun Huang
چکیده

This work introduces a method of continuous particle separation through standing surface acoustic wave (SSAW)-induced acoustophoresis in a microfluidic channel. Using this SSAW-based method, particles in a continuous laminar flow can be separated based on their volume, density and compressibility. In this work, a mixture of particles of equal density but dissimilar volumes was injected into a microchannel through two side inlets, sandwiching a deionized water sheath flow injected through a central inlet. A one-dimensional SSAW generated by two parallel interdigital transducers (IDTs) was established across the channel, with the channel spanning a single SSAW pressure node located at the channel center. Application of the SSAW induced larger axial acoustic forces on the particles of larger volume, repositioning them closer to the wave pressure node at the center of the channel. Thus particles were laterally moved to different regions of the channel cross-section based on particle volume. The particle separation method presented here is simple and versatile, capable of separating virtually all kinds of particles (regardless of charge/polarization or optical properties) with high separation efficiency and low power consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and numerical studies on standing surface acoustic wave microfluidics.

Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW microfluidic model based on the basic t...

متن کامل

Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).

Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bon...

متن کامل

Separation of Escherichia coli Bacteria from Peripheral Blood Mononuclear Cells Using Standing Surface Acoustic Waves

A microfluidic device was developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. In this device, two identical surface acoustic waves (SAWs) generated by interdigital transducers (IDTs) propagated toward a microchannel, which accordingly built up a standing surface acoustic wave (SSAW) field across the channel. A numerical model, coupling a pie...

متن کامل

Modelling and Simulation of Microparticles Separation using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices for Biomedical Applications

The design of significant and powerful standing surface acoustic wave (SSAW) microfluidic device for microparticles separation for biomedical applications is depending on the dimensions of microchannels for the collecting microparticles. For this purpose, precise calculations of the displacement of microparticles in the working area of SSAW microfluidic device are required. In this paper, the t...

متن کامل

The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation

The separation of blood components (WBCs, RBCs, and platelets) is important for medical applications. Recently, standing surface acoustic wave (SSAW) microfluidic devices are used for the separation of particles. In this paper, the design analysis of SSAW microfluidics is presented. Also, the analysis of SSAW force with Rayleigh angle effect and its attenuation in liquid-loaded substrate, visco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 9 23  شماره 

صفحات  -

تاریخ انتشار 2009